Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes
نویسندگان
چکیده
MMV007564 is a novel antimalarial benzimidazolyl piperidine chemotype identified in cellular screens. To identify the genetic determinant of MMV007564 resistance, parasites were cultured in the presence of the compound to generate resistant lines. Whole genome sequencing revealed distinct mutations in the gene named Plasmodium falciparum cyclic amine resistance locus (pfcarl), encoding a conserved protein of unknown function. Mutations in pfcarl are strongly associated with resistance to a structurally unrelated class of compounds, the imidazolopiperazines, including KAF156, currently in clinical trials. Our data demonstrate that pfcarl mutations confer resistance to two distinct compound classes, benzimidazolyl piperidines and imidazolopiperazines. However, MMV007564 and the imidazolopiperazines, KAF156 and GNF179, have different timings of action in the asexual blood stage and different potencies against the liver and sexual blood stages. These data suggest that pfcarl is a multidrug-resistance gene rather than a common target for benzimidazolyl piperidines and imidazolopiperazines.
منابع مشابه
Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance
UNLABELLED Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecula...
متن کاملRESISTANCE OF PLASMODIUM FALCIPARUM TO CHLOROQUINE IN SOUTH EASTERN IRAN
In vivo and in vitro assessments of the response of P. falciparum to chloroquine using WHO standard kits and techniques were carried out in I ran Shahr, Sistan and Baluchestan province of Iran in 1985. In the in vivo assessment, 24 malaria patients treated with chloroquine (25mg/kg over three days) were followed up for one to four weeks. The mean parasite clearance time was 4.3 days and in...
متن کاملGenetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7.
The resurgence of malaria in recent decades has been accompanied by the worldwide spread of resistance to chloroquine, a drug once uncontested as the first-line antimalarial agent because of its efficacy and low toxicity. Chloroquine-resistant strains of Plasmodium falciparum counter the drug by expelling it rapidly via an unknown mechanism. In the absence of explicit biochemical knowledge of t...
متن کاملHalogenation as a Strategy to Improve Antiplasmodial Activity: A Report of New 3-Alkylpyridine Marine Alkaloid Analogs
Introduction: Due to the emergence of resistance to antimalarial drugs as well as the lack of vaccination for malaria, there is an urgent demand for the development of new antimalarial alternatives. Recently, our research group developed a new set of 3-alkylpyridine marine alkaloid analogs, of which a compound known as compound 5 was found to be inactive against Plasmodium ...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016